Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3491, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347145

RESUMO

Recently, diesel engine emissions have been designated as a first-class carcinogen by the World Health Organization (WHO). As such, problems with diesel engine emissions continue to increase around the world. This study aimed to analyze the emissions (CO, NOx, PM) of agricultural tractors during farming operations in order to build a reliable national inventory of air pollutant emissions. Emission data were collected using a portable emission measurement system during actual agricultural operation. The load factor (LF) of the engine was calculated using the collected engine information, the emission factor was analyzed using the LF and the measured emission. The LF was significantly different from the current standard value of 0.48, which is used in Korea to calculate exhaust emissions. The deviation ratio of the emission factor was 0.039 ~ 56.59 compared to Tier-4 emission regulation standards. Under many conditions, the calculated emission factor was higher than the emission limit. Thus, this study provides useful information for emission inventory construction through emission calculation under actual conditions and suggests the need to realize the currently applied emission factor.

2.
Sensors (Basel) ; 20(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046327

RESUMO

The objectives of this study were to develop a real-time tillage depth measurement system for agricultural tractor performance analysis and then to validate these configured systems through soil non-penetration tests and field experiment during plow tillage. The real-time tillage depth measurement system was developed by using a sensor fusion method, consisting of a linear potentiometer, inclinometer, and optical distance sensor to measure the vertical penetration depth of the attached implement. In addition, a draft force measurement system was developed using six-component load cells, and an accuracy of 98.9% was verified through a static load test. As a result of the soil non-penetration tests, it was confirmed that sensor fusion type A, consisting of a linear potentiometer and inclinometer, was 6.34-11.76% more accurate than sensor fusion type B, consisting of an optical distance sensor and inclinometer. Therefore, sensor fusion type A was used during field testing as it was found to be more suitable for use in severe working environments. To verify the accuracy of the real-time tillage depth measurement system, a linear regression analysis was performed between the measured draft and the predicted values calculated using the American Society of Agricultural and Biological Engineers (ASABE) standards-based equation. Experimental data such as traveling speed and draft force showed that it was significantly affected by tillage depth, and the coefficient of determination value at M3-Low was 0.847, which is relatively higher than M3-High. In addition, the regression analysis of the integrated data showed an R-square value of 0.715, which is an improvement compared to the accuracy of the ASABE standard prediction formula. In conclusion, the effect of tillage depth on draft force of agricultural tractors during plow tillage was analyzed by the simultaneous operation of the proposed real-time tillage depth measurement system and draft force measurement system. In addition, system accuracy is higher than the predicted accuracy of ±40% based on the ASABE standard equation, which is considered to be useful for various agricultural machinery research fields. In future studies, real-time tillage depth measurement systems can be used in tractor power train design and to ensure component reliability, in accordance with agricultural working conditions, by predicting draft force and axle loads depending on the tillage depth during tillage operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...